Steps to Establishing Standard Practice Parameters

Infant Videofluoroscopic Swallow Study

Katlyn Elizabeth McGrattan, Ph.D.
Research Associate
Communication Sciences and Disorders
Northwestern University
Katlyn.McGrattan@Northwestern.edu

Supported by:
- National Institutes of Health (NIH) R01DC011290, Standardization of Videofluoroscopic Swallow Studies for Bottle-Fed Children (POC: Maureen Lefton-Greif and Bonnie Martin-Harris)
- NIH NIDCD, 1K24DC12801, Research and mentorship on swallowing impairment and respiratory-swallow coordination (POC: Bonnie Martin-Harris)

Support and Disclosures

Salary Support
- Northwestern University

Grants and Research Support
- NSF, IIP, 1735858, Non-Invasive Neonatal Feeding Assessment Device (I-Corps STEM Team, PI: McGrattan)
- ETI 2016, Changes in Infant Oropharyngeal Swallow Physiology Throughout the Videofluoroscopic Swallow Exam (POC: McGrattan)
- NIH NIDCD, R01DC011290, Standardization of Videofluoroscopic Swallow Studies for Bottle-Fed Children (POC: Maureen Lefton-Greif and Bonnie Martin-Harris)
- NIH NIDCD, 1K24DC12801, Research and mentorship on swallowing impairment and respiratory-swallow coordination (POC: Bonnie Martin-Harris)

STANDARD PRACTICE PARAMETERS

Evidence-based guidelines developed to assist practitioners in providing best patient care:
- Clinician Competencies
- Procedure Indications
- Specifications for Procedure Execution
- Specifications for Procedure Interpretation

"Ultimate judgement regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of the circumstances presented."
- ACR, 2014

Standardized Protocol: The use of a standardized exam protocol did not increase radiation exposure.

Pulse Rate: Swallow studies completed at less than 30 pulses per second inhibited clinicians' ability to identify physiologic deficits and bolus airway entry (penetration/aspiration)

Bonilha, 2013
STANDARD PRACTICE PARAMETERS: VFSS

Paucity of standard practice parameters guiding the execution and interpretation of the VFSS in bottle-fed infants contributes to:

- Reduced Diagnostic Validity
- Reduced Diagnostic Reliability
- Reduced Translatable Yield
- Increased Radiation Exposure
- Fragmented Patient Care and Hand-off

Videofluoroscopic Swallow Study (VFSS)
Modified Barium Swallow Study (MBSS)

Videoradiographic examination of swallow function using barium contrast to evaluate the:

- Timing and integrity of oropharyngeal swallowing physiology
- Effect of these physiologic processes on bolus flow
- Identify the therapeutic effect of targeted dysphagia regimens

CONTRAST AGENTS

Barium has unique physical and chemical properties that distinguish it from infant formula and breast milk:

- Viscosity
- Density
- Yield Stress
- Temperature
- Taste
- pH

Barium does not need to be a direct correlate to the infants milk; by using standardized contrast within each viscosity category clinicians can extrapolate.

Contrast Agents

Varilax® Barium
Videofluoroscopic Swallow Study

Procedure

Barium

Analysis

Bottle

Visualization

BaByVFSS

Purpose of the VFSS is not just to identify physiologic deficits, but also, to identify the effect of targeted therapeutic interventions:

- Viscosity
- Flow Rate

Variability in flow rates of hospital, single-use nipples limits the ability to provide a standard milk flow rate across exams.

Limited nipple options among single-use and many other commercially available nipples limits the ability to test isolated therapeutic treatment effects.

Matthew, 1991

Pados, 2015

Matthew, 1989

EFFECT OF BOTTLE NIPPLE ON BARIUM FLOW RATE DURING THE VIDEOFLUOROSCOPIC SWALLOW STUDY

Specific Aim 1: Identify the nipple that enables thin barium contrast to be expressed at the same rate as formula.

Specific Aim 2: Identify the nipple that enables nectar barium contrast to be expressed at the same rate as formula.

METHODS

Flow rates of commercially available bottle nipples were calculated during the expression of Similac Advanced Formula®, Thin VariBar® Barium, and Nectar VariBar® Barium through a pulsated pressure pump (Ameda®):

- Dr. Brown's® Level 1
- Dr. Brown's® Level 2
- Dr. Brown's® Level 3
- Dr. Brown's® Level 4

Differences in flow rates across conditions were tested using ANOVA with post hoc Dunnett’s testing to identify the nipple that enabled thin and nectar barium contrast to flow at the same rates as formula from a Dr. Brown's® Level 1 nipple.

McGrattan, 2018

Matthew, 2015
Flow Rates of Formula and Thin Barium Contrast

Flow Rates of Formula and Nectar Barium Contrast

Flow Rates of Formula and Nectar Barium Contrast

Flow Rates of Formula and Nectar Barium Contrast

p = 0.45

p < 0.001

p < 0.001

p = 0.586
Conclusions

- Standardization of bottle nipple for thin and nectar barium contrast provisions is necessary to improve diagnostic validity, reliability, and evaluate treatment effect.
- Infants appropriate to initiate the exam on a Dr. Brown's Level 1 bottle nipple should be provided nectar liquids via Dr. Brown's level 3 nipple to test the effect of nectar liquids.
- Future investigations testing flow rate equivalents of preemie nipples are warranted to refine the procedure guidelines.

Background

- Videofluoroscopic swallow study is considered by many as the gold standard among instrumental oropharyngeal swallow assessments.
- Fluoroscopic visualization exposes infants to harmful ionizing radiation.
- Clinicians make determinations about deficits based on a sample of fluoroscopically observed swallows.

Background

Clinical evidence suggests feeding performance changes throughout the course of a bottle-feed.
BACKGROUND

If physiologic changes also occur in oropharyngeal swallow physiology, the timing that swallows are fluoroscopically sampled has the potential to greatly influence the exam’s diagnostic accuracy.

The aim of this pilot investigation was to identify the stability of oropharyngeal swallow physiology and airway protection throughout the VFSS exam.

METHODS

Videofluoroscopic Swallow Study Procedure

Fluoroscopic visualization of 5 thin liquid swallows at four time points (min:sec):

00:00
00:30
01:30
02:30

§ No attempts to provide compensatory interventions or remove bottle from oral cavity

McGrattan, 2018

VFSS scored frame-by-frame by two SLPs with ≥80% reliability in scoring characteristics of oropharyngeal swallow physiology and bolus flow:

- Number of sucks per swallow
- Oral bolus containment prior to swallow
- Bolus location at initiation of swallow
- Timing of initiation of pharyngeal swallow
- Bolus airway entry

VFSS scored frame-by-frame by two SLPs with ≥80% reliability in scoring characteristics of oropharyngeal swallow physiology and bolus flow:

Differences in swallow attributes between time points were tested using student t-test and Rao-Scott Chi-Square test with clustering to account for multiple data points within subjects.

Study Sample (N=30)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Study Sample (N=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18 (60%)</td>
</tr>
<tr>
<td>Female</td>
<td>12 (40%)</td>
</tr>
<tr>
<td>Postmenstrual Age</td>
<td>55.7 (5.04)</td>
</tr>
<tr>
<td>VFSS Indication</td>
<td></td>
</tr>
<tr>
<td>Cough/Choke with Feeds</td>
<td>11 (37%)</td>
</tr>
<tr>
<td>Chronic Respiratory Morbidity</td>
<td>5 (17%)</td>
</tr>
<tr>
<td>Insufficient Milk Ingestion</td>
<td>5 (17%)</td>
</tr>
<tr>
<td>Follow-up From Previously Documented Impairment</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Cardiopulmonary Compromise with Feeds</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Fussiness with Feeds</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Post Surgical Swallowing Risk</td>
<td>2 (7%)</td>
</tr>
</tbody>
</table>

Outcomes reported as N (percent) or mean (standard error).

McGrattan, 2018
NUMBER OF SUCKS PER SWALLOW

Mean Number of Sucks Per Swallow

Time (min:sec)

0 0.5 1 1.5 2 2.5 3

0:00 0:30 1:30 2:30

p = 0.004

p = 0.004

p = 0.202

McGrattan, 2018

ORAL BOLUS HOLD

Percent of Swallows with bolus escape to the pharynx

Time (min:sec)

0 0.1 0.2 0.3 0.4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

p = 0.001

p = 0.003

p = 0.313

McGrattan, 2018

INITIATION OF PHARYNGEAL SWALLOW

Percent of Swallows Initiating Below the Valleculae

Time (min:sec)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

p = 0.001

p = 0.004

p = 0.017

McGrattan, 2018

TIMING OF INITIATION OF PHARYNGEAL SWALLOW

Mean Timing of Initiation of Pharyngeal Swallow (ms)

Time (min:sec)

0 0.1 0.2 0.3 0.4

0 50 100 150 200 250 300

p = 0.003

p = 0.032

p = 0.672

McGrattan, 2018
CONCLUSIONS

- Oropharyngeal swallowing physiology exhibits temporal changes throughout the videofluoroscopic exam.
- The timing that swallows are fluoroscopically visualized may impact diagnostic validity.
- Future investigations examining the underlying mechanisms responsible for these changes are necessary to identify targets for swallowing interventions.

Standardization of Videofluoroscopic Swallow Studies for Bottle-Fed Children

NIHCD R01DC011290

Co-PI: Bonnie Martin-Harris, Medical University of South Carolina
Co-PI: Maureen Lefton-Greif, Johns Hopkins University

Videofluoroscopic Swallow Study

- **Procedure**
 - Barium
 - Bottle

- **Analysis**
 - Visualization
 - BaByVFSS™
Clinician Training

Prototype Tool Development

Reliability Testing

Prototype Tool Refinement

Find out more at...
SCSC.northwestern.edu